跳转到内容
主菜单
主菜单
移至侧栏
隐藏
导航
首页
最近更改
随机页面
MediaWiki帮助
非小号百科
搜索
搜索
创建账号
登录
个人工具
创建账号
登录
未登录编辑者的页面
了解详情
贡献
讨论
编辑“
哈希(Hash)
”(章节)
页面
讨论
不转换
不转换
简体
繁體
大陆简体
香港繁體
澳門繁體
大马简体
新加坡简体
臺灣正體
阅读
编辑
编辑源代码
查看历史
工具
工具
移至侧栏
隐藏
操作
阅读
编辑
编辑源代码
查看历史
常规
链入页面
相关更改
特殊页面
页面信息
警告:
您没有登录。如果您进行任何编辑,您的IP地址会公开展示。如果您
登录
或
创建账号
,您的编辑会以您的用户名署名,此外还有其他益处。
反垃圾检查。
不要
加入这个!
=== 语音识别 === 对于像从一个已知列表中匹配一个MP3文件这样的应用,一种可能的方案是使用传统的哈希函数——例如MD5,但是这种方案会对时间平移、CD读取错误、不同的音频压缩算法或者音量调整的实现机制等情况非常敏感。使用一些类似于MD5的方法有利于迅速找到那些严格相同(从音频文件的二进制数据来看)的音频文件,但是要找到全部相同(从音频文件的内容来看)的音频文件就需要使用其他更高级的算法了。 那些并不紧随IT工业潮流的人往往能反其道而行之,对于那些微小差异足够健壮的哈希函数确实存在。现存的绝大多数哈希算法都是不够健壮的,但是有少数哈希算法能够达到辨别从嘈杂房间里的扬声器里播放出来的音乐的健壮性。有一个实际的例子是Shazam[1] (页面存档备份,存于互联网档案馆) 服务。用户可以用手机打开其app,并将话筒靠近用于播放音乐的扬声器。该项服务会分析正在播放的音乐,并将它于存储在数据库中的已知的哈希值进行比较。用户就能够收到被识别的音乐的曲名。
摘要:
请注意,所有对非小号百科的贡献均可能会被其他贡献者编辑、修改或删除。如果您不希望您的文字作品被随意编辑,请不要在此提交。
您同时也向我们承诺,您提交的内容为您自己所创作,或是复制自公共领域或类似自由来源(详情请见
非小号百科:著作权
)。
未经许可,请勿提交受著作权保护的作品!
取消
编辑帮助
(在新窗口中打开)
开关有限宽度模式