跳转到内容
主菜单
主菜单
移至侧栏
隐藏
导航
首页
最近更改
随机页面
MediaWiki帮助
非小号百科
搜索
搜索
创建账号
登录
个人工具
创建账号
登录
未登录编辑者的页面
了解详情
贡献
讨论
编辑“
零知识证明(ZKP)
”(章节)
页面
讨论
不转换
不转换
简体
繁體
大陆简体
香港繁體
澳門繁體
大马简体
新加坡简体
臺灣正體
阅读
编辑
编辑源代码
查看历史
工具
工具
移至侧栏
隐藏
操作
阅读
编辑
编辑源代码
查看历史
常规
链入页面
相关更改
特殊页面
页面信息
警告:
您没有登录。如果您进行任何编辑,您的IP地址会公开展示。如果您
登录
或
创建账号
,您的编辑会以您的用户名署名,此外还有其他益处。
反垃圾检查。
不要
加入这个!
=== 离散对数 === 前段概念适用于较实际的密码学场景。设小静欲向阿严证明,自己知道某群某指定元素的离散对数。 例如,给定数、素数、生成元,小静希望证明自己知道某数使,而不泄漏。事实上,知晓之事,本身可用作身份证明,即小静可借此证明该值是由她先暗中选某随机值,再计算,公诸所有潜在的验证者。如此,若某人证明自己知道,则相当于证明自己即小静,因为学者相信离散对数很难计算,即其他人无法从倒推出值。 证明协议如下:每轮,小静预备随机数,计算,将该值传予阿严。收到后,阿严随机请求下列两者之一:小静公开值,或值。单独看任何一个值,其分布皆是均匀随机,所以协议每轮皆不泄露任何机密。 阿严可以验证所得回应。若问,则可以计算,检查是否等于。若问,则可以计算,而该值应当等于,所以亦验证值是否满足该条件。若小静确实知道值,理应很易回答阿严的任一条问题。 若小静预知阿严采用何种盘问,则很易作弊,在不知的情况下,向阿严假装自己知道:若她知道阿严将要问,则如常继续,选,计算,告知阿严值;她可以答出值。另一方面,若她知道阿严将问,则取随机一个值,计算,然后发送值予阿严(阿严会以为该值为值)。当阿严要求公开值时,小静公开,但这足以让阿严验证结果,因为他计算的值实为,是等于,因为正是小静一早乘上的逆元而计出。 然而,若有某轮验证中,阿严的问题与小静预估的有出入,则小静无法计算出要答的结果(假定该群的离散对数问题难解)。若她拣选并公开,则无法作弊给出服众的值来通过阿严的检查,因为不知道。又若她拣选值,伪装成,则要回答公开值的离散对数,但她无法回答,因为该值是由已知值乘出,而非某已知值以为底的幂,所以她不能计出其离散对数 所以,作弊的证明者仅得概率通过某轮验证。重复足够多轮,成功作弊的概率可压到任意小。 ==== 撮要 ==== 小静要证知道值(如其密码)。 # 小静与阿严约定某素数,及域的乘法生成元。 # 小静计算,发送予阿严。 # 重复以下步骤若干次: ## 小静选某个均匀随机数,计算,发送予阿严。 ## 阿严问小静或,二选其一。若问前者,则阿严验证。若问后者,则他验证。 之值,可视为的加密。若确为随机,在至间均匀分布,则也同样均匀分布,所以不会泄漏任何关于的信息(见一次性密码本)。
摘要:
请注意,所有对非小号百科的贡献均可能会被其他贡献者编辑、修改或删除。如果您不希望您的文字作品被随意编辑,请不要在此提交。
您同时也向我们承诺,您提交的内容为您自己所创作,或是复制自公共领域或类似自由来源(详情请见
非小号百科:著作权
)。
未经许可,请勿提交受著作权保护的作品!
取消
编辑帮助
(在新窗口中打开)
开关有限宽度模式